Oxygen Insertion into the Metal-Carbon Bond of Cyclopalladated 2-(Alkylsulphinyl)azobenzenes by Peracids. High Yield Regiospecific Aromatic Hydroxylation

Chitta R. Sinha, Debkumar Bandyopadhyay, and Animesh Chakravorty"

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700032, India

The title reaction occurs by an associative mechanism involving heterolytic *0-0* cleavage; the sequence azobenzene \rightarrow (1) \rightarrow (2) \rightarrow azophenol leading to overall regiospecific aromatic hydroxylation has been realised.

The insertion of oxygen into a metal-carbon σ -bond, M-C \rightarrow M-OC, is a potentially useful tool for functionalisation of organic substrates. Thus the net result of the metallationoxidation-demetallation sequence of equation (I) is hydroxylation. However, very little is known about the intermediate oxidation step.¹⁻³ We now report that the oxidation of cyclopalladated 2-(alkylsulphinyl) azobenzene **(1)** to the corresponding phenolato complex **(2)** by peracids (YC03H) is a clean, quantitative, and mechanistically tractable reaction. Smooth demetallation of **(2)** is achievable, resulting in

high-yield aromatic hydroxylation according to the reaction sequence of equation (1).

$$
C-H \to C-M \to C-OM \to C-OH \tag{1}
$$

To observe the effect of variation of R , R' , and Y on the rate of oxygen insertion, six reactions (r_1) — (r_6) were studied in chloroform solution (Table 1). Rates, monitored spectrophotometrically, are first order with respect to the concentrations of both (1) and YCO₃H. The spectra of the reaction

Table 1. Rate constants for oxygen insertion into cyclopallated **2-(alkylsulphinyl)azobenzenes (1)** by peracids YC03H at 300 K in CHCI₃.

Reaction	R	\mathbf{R}'	Y	k /mol ⁻¹ dm ³ s ⁻
(r_1)	Me	H	$C_6H_4NO_2(p)$	1.86
(r ₂)	Me	H	$C_6H_4Cl(m)$	0.41
(r_3)	Me	H	Ph	0.09
(r_4)	Me	H	PhCH ₂	0.06
(r ₅)	PhCH ₂	Н	$C_6H_4Cl(m)$	1.99
(r ₆)	Me	Me	$C_6H_4Cl(m)$	0.69
R' N	CI Pd (1)	R	ĸ. $N = N$ (2)	Cl Pd R
٧ R' cι Рd Ν n R (3)				

solutions reveal that the only detectable palladium species present are **(1)** and **(2)** (Figure 1). Second order rate constants (300 K) are listed in Table 1. Variable temperature rate studies (289-307 K) made for (r_1) - (r_6) have revealed that the enthalpy of activation is uniformly small and positive $(7-10 \text{ kcal mol}^{-1})$; 1 kcal = 4.184 kJ) and the entropy of activation is large and negative $(-30 \text{ to } -40 \text{ cal } K^{-1} \text{ mol}^{-1})$. Clearly bond-breaking and bond-making are both important in a strongly associative transition state.

A plausible transition state is **(3).** The ability of pallad $ium(II)$ to bind to peroxo oxygen has been documented.⁴ The data of Table 1 reveal that the rate increases upon making (i) the Pd-C bond electron rich with the help of electron releasing R' substitutents $[cf. (r_2)$ and (r_6)], (ii) the Pd \cdots O association in **(3)** stronger by augmenting the electrophilicity of the metal centre with the help of electron withdrawing R $[cf. (r_2)$ and $(r₅)$, and (iii) YCO₂H a better leaving acid⁵ by modifying Y $[(r_1)$ — $(r_4)]$. The plot of log *k vs.* pK of YCO₂H is linear $[(r_1)$ — $(r_4)]$ and so is the plot of log *k vs.* Hammett σ of substituents (p-NO₂, m-Cl, and H) of aromatic acids $[(r_1) (r₃)$] (Figure 2). The trends cited above strongly support the proposed electron movements in **(3)** which correspond to heterolytic 0-0 cleavage and electrophilic insertion of '0' into the C-Pd bond.

In 3d metal ion catalysed epoxidation of alkenes by $YCO₃H$ higher valent 0x0 complexes are demonstrable intermediates.6 In contract we have no evidence for an intermediate oxo stage in the progression of **(3)** to $(2) + YCO₂H$. Oxometal species are expected7 only when the number of d-electrons in the metal ion is ≤ 4 . For palladium this condition is satisfied only by the unrealistic oxidation levels $\geq +6$. The electron movements in **(3)** are believed to be largely concerted.

The 2-(**alkylsulphinyl)azobenzene** ligands (LH) required for the synthesis of (1) were made by $H_2O_2(25\%)$ oxidation of the corresponding sulphides in glacial acetic acid.8 These

Figure 1. Visible spectra of a chloroform solution (300 K) in which reaction (r_4) is in progress. The arrows indicate increase and decrease of band intensities as the reaction proceeds.

Figure 2. Hammett plots of log k vs. pK of YCO₂H (the Ys are indicated against corresponding points) and $log k$ *vs.* Hammett σ of substituents of aromatic acids.

furnished deep brown (1) upon treatment of $Na₂PdCl₄$ in ethanol. The oxidation of (1) to dark violet (2) by YCO₃H occurs smoothly in chloroform solvent at room temperature. Complex **(2)** affords the corresponding free phenolic ligand (LOH) upon demetallation (metallic palladium is deposited) with hydrazine hydrate in acetonitrile. The regiospecific *(ortho* to azo function) hydroxylation of LH to LOH is thus accomplished. The yields for all three steps $[LH \rightarrow (1) \rightarrow (2)$ \rightarrow LOH] are excellent (80—100%). All ligands and complexes are new and were characterized with the help of elemental analysis, i.r., u.v.-visible, and high-resolution 1H n.m.r. spectra.9 For most species the 1H n.m.r. signals for all protons could be unambiguously assigned. The S-binding of 2-(alkylsulphinyl)azobenzenes is reflected¹⁰ in the downfield shift of the R signals in going from ligand to complex δ_{Me} : (1; R = Me, $R' = H$) 3.41; ligand 2.91] and the increase in methylene Me, $R' = H$) 3.41; ligand 2.91] and the increase in methylene
proton inequivalence $\delta_{CH_2} (J \sim 13 \text{ Hz})$: (1; $R = CH_2Ph$, $R' = H$) 4.62, 5.02; ligand 4.12, 4.34]. Also the SO stretch in the i.r. is blue-shifted¹¹ upon complexation (complexes $1110-1150$; ligands 1030-1040 cm-1). Identification of **(2)** was completed by independent synthesis from ligands generated authentically *via* nonoxidative routes (diazo coupling).⁹

Acknowledgement is made for financial support received from the Council of Scientific and Industrial Research, New Delhi, India.

Received, 24th November 1987; Com. 171 7

References

- 1 **I.** J. Harvie and F. J. McQuillin, *J. Chem. SOC., Chem. Commun.,* 1976, 369; B. A. Grigor and A. Neilson, *J. Organomet. Chem.,* 1977, 129, C17.
- 2 A. K. Mahapatra, D. Bandyopadhyay, P. Bandyopadhyay, and A. Chakravorty, *Inorg. Chem.,* 1986,25,2214; A. K. Mahapatra, D. Bandyopadhyay, P. Bandyopadhyay, and A. Chakravorty, *J. Chem. Soc., Chem. Commun.,* 1984, 999.
- 3 A. V. Assett, B. D. Santarsiero, and J. E. Bercaw, *J. Am. Chem. Soc.,* 1986, 108, 8291; T. V. Lubben and P. T. Wolczanski, *ibid.,* 1985, 107, 701.
- 4 H. Mimoun, R. Charpentier, **A.** Mitschler, J. Fischer, and R. Weiss, *J. Am. Chem. Soc.,* 1980, 102, 1047.
- *5* W. A. Lee and T. C. Bruice, *Inorg. Chem.,* 1986, **25.** 131.
- 6 J. T. Groves, R. C. Haushalter, N. Nakamura, T. **E.** Nemo, and B. J. Evans, *J. Am. Chem.* SOC., 1981, **103,** 2884; T. G. Traylor and A. R. Miksztal. *ibid.,* 1987, 109, 2770; A. Selvin and M. Fontecave, *ibid.,* 1986, 108, 3266, and references therein.
- 7 R. H. Holm, *Chem. Rev.,* 1987, 87, 1401.
- 8 E. V. Bell and G. M. Bennett,]. *Chem.* SOC., 1927, 1798; D. **S.** Tarbell and C. Weaver, *J. Am. Chem. SOC.,* 1941, **63,** 2939.
- 9 C. R. Sinha, D. Bandyopadhyay, and A. Chakravorty, *Inorg. Chem.,* 1988, in the press.
- 10 J. A. Davies, *Adv. Inorg. Chem. Radiochem.,* 1981, **24,** 115; W. Kitching, C. J. Moore, and D. Doddrell, *Aust. J. Chem.,* 1969,22, 1149.
- 11 J. H. Price, A. N. Williamson, R. F. Schramm, and B. B. Wayland, *Inorg. Chem.,* 1972, **11,** 1280; W. Kitching, C. J. Moore, and D. Doddrell, *ibid.,* 1970, 9, 541.